Practical visualization of internal structure of white matter for image interpretation: staining a spin-echo T2-weighted image with three echo-planar diffusion-weighted images.

نویسندگان

  • Hajime Tamura
  • Shoki Takahashi
  • Noriko Kurihara
  • Shogo Yamada
  • Jun Hatazawa
  • Toshio Okudera
چکیده

BACKGROUND AND PURPOSE To our knowledge, no method satisfactory for clinical use has been developed to visualize white matter fiber tracts with diffusion-weighted MR imaging. The purpose of this study was to determine whether superposition of a spin-echo T2-weighted image and a color-coded image derived from three orthogonal diffusion-weighted images could show fiber tract architecture of the brain with an image quality appropriate for accurate reading with a computer monitor. METHODS MR images from 50 consecutive cases were reviewed. Three diffusion-weighted images per section were acquired with three orthogonal motion-probing gradients. These images were registered to a corresponding spin-echo T2-weighted image. A color-coded image was synthesized from three diffusion-weighted images by assigning red, green, or blue to each diffusion-weighted image and then adding a spin-echo T2-weighted image with a weighting factor. The ability of the superposed image to delineate the white matter pathways was evaluated on the basis of the known anatomy of these pathways and qualitatively compared with that of the spin-echo T2-weighted image. RESULTS The main white matter fiber pathways, in particular the superior longitudinal fascicle, corpus callosum, tapetum, optic radiation, and internal capsule, were more clearly and easily identified on the superposed image than on the spin-echo T2-weighted image. The time required to produce the superposed image was approximately 40 minutes. CONCLUSION Superposition of a spin-echo T2-weighted image and a color-coded image created from three orthogonal diffusion-weighted images showed structures of the brain that were not clearly visible on the spin-echo T2-weighted image alone. Such superposition presents images that are easy to interpret correctly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inversion-recovery echo-planar MR in adult brain neoplasia.

PURPOSE A T1-weighted multishot inversion-recovery (IR) echo-planar MR imaging (EPI) sequence was developed to improve intracranial tissue differentiation; its diagnostic utility was compared with that of conventional axial T1-weighted spin-echo and axial T2-weighted turbo spin-echo sequences. METHODS Eighteen patients with known or suspected primary or metastatic brain neoplasia were imaged ...

متن کامل

T1-weighted three-dimensional magnetization transfer MR of the brain: improved lesion contrast enhancement.

PURPOSE We developed and evaluated clinically T1-weighted three-dimensional gradient-echo magnetization transfer (MT) sequences for contrast-enhanced MR imaging of the brain. METHODS A short-repetition-time, radio frequency-spoiled, 3-D sequence was developed with a 10-millisecond MT pulse at high MT power and narrow MT pulse-frequency offset, and the enhancing lesion-to-normal white matter b...

متن کامل

GRASE (gradient- and spin-echo) MR imaging: a new fast clinical imaging technique.

A novel technique of magnetic resonance (MR) imaging, which combines gradient-echo and spin-echo (GRASE) technique, accomplishes T2-weighted multisection imaging in drastically reduced imaging time, currently 24 times faster than spin-echo imaging. The GRASE technique maintains contrast mechanisms, high spatial resolution, and image quality of spin-echo imaging and is compatible with clinical w...

متن کامل

3D steady-state diffusion-weighted imaging with trajectory using radially batched internal navigator echoes (TURBINE).

While most diffusion-weighted imaging (DWI) is acquired using single-shot diffusion-weighted spin-echo echo-planar imaging, steady-state DWI is an alternative method with the potential to achieve higher-resolution images with less distortion. Steady-state DWI is, however, best suited to a segmented three-dimensional acquisition and thus requires three-dimensional navigation to fully correct for...

متن کامل

Lateral geniculate nucleus: anatomic and functional identification by use of MR imaging.

BACKGROUND AND PURPOSE MR imaging has the potential capacity for noninvasively depicting the anatomy and function of thalamic nuclei. The purpose of this study was to identify the lateral geniculate nucleus (LGN), which is the thalamic relay nucleus for vision, with anatomic and functional MR imaging at 1.5 T. METHODS Three-millimeter-thick axial images were obtained from eight volunteers by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 24 3  شماره 

صفحات  -

تاریخ انتشار 2003